Hệ thống bảo vệ nhiệt Thâm nhập khí quyển

Hệ thống bảo vệ nhiệt giúp bảo vệ tàu vũ trụ khi nhiệt lượng tăng cao do ma sát với khí quyển trong quá trình thâm nhập bầu khí quyển. Hệ thống này cũng giúp bảo vệ tàu khỏi môi trường nhiệt độ ngoài không gian. Có nhiều cách để bảo vệ nhiệt cho tàu vũ trụ như sử dụng các tấm vật liệu cách nhiệt, làm mát thụ động/chủ động bề mặt tàu vũ trụ

Tấm cách nhiệt mài mòn

Tấm chắn nhiệt bị bào mòn sau khi tàu Apollo 12 hạ cánh.

Nguyên lý của tấm cách nhiệt tự bào mòn là tách lớp khí ở nhiệt độ cao ra khỏi lớp chắn nhiệt bên ngoài (tạo ra một lớp biên ở nhiệt độ thấp hơn). Lớp biên được hình thành từ khí sản phẩm của phản ứng nhiệt phân từ vật liệu tấm chắn cách nhiệt bên ngoài và bảo vệ chống lại tất cả các dạng thông lượng nhiệt. Quá trình chặn thông lượng nhiệt bằng việc tạo ra lớp biên này được gọi là sự tắc nghẽn. Trong đó lớp biên gây tắc nghẽn và cản trở dòng khí đối lưu và xúc tác. Cơ chế chặn thông lượng nhiệt bức xạ bằng hình thành lớp biên là cơ chế chính của vật liệu được sử dụng làm tấm chắn nhiệt của vệ tinh Galileo. Tấm chắn nhiệt của Galileo sử dụng vật liệu chế tạo là carbon phenolic. Đây cũng là vật liệu được sử dụng trong miệng xả của tên lửa đẩy phụ trợ nhiên liệu rắn của tàu con thoi, và sử dụng trong mũi khí động của các phương tiện hồi quyển.

Những nghiên cứu về lớp bảo vệ nhiệt được thực hiện tại trung tâm nghiên cứu Ames của NASA. Trung tâm Ames có nhiều đường hầm gió với khả năng tạo ra gió ở nhiều tốc độ khác nhau. Ban đầu việc thử nghiệm được tiến hành với mô hình tấm chắn nhiệt bào mòn được phân tích trong đường hầm gió siêu vượt âm.[15] Các thử nghiệm về vật liệu mài mòn được thực hiện tại tổ hợp Ames Arc Jet. Đã có rất nhiều hệ thống bảo vệ nhiệt cho tàu vũ trụ được thử nghiệm tại đây bao gồm các tấm chắn nhiệt sử dụng trên tàu Apollo, tàu con thoi, và tàu Orion.[16]

Mars Pathfinder đang hoàn thiện công đoạn lắp ráp cuối cùng, ở đây ta thấy vỏ chắn nhiệt của nó, cùng với động cơ nhiên liệu rắn

Độ dẫn nhiệt của một vật liệu TPS cụ thể thường tỷ lệ với mật độ của vật liệu.[17] Cacbon phenolic là một vật liệu mài mòn rất hiệu quả, nhưng cũng có mật độ cao không mong muốn. Nếu thông lượng nhiệt gây ra bởi một phương tiện hồi quyển không đủ để gây ra nhiệt phân thì độ dẫn điện của vật liệu TPS có thể cho phép nhiệt lượng dẫn vào đường vật liệu liên kết TPS, do đó dẫn đến hỏng TPS. Do đó, đối với các quỹ đạo hồi quyển gây ra thông lượng nhiệt thấp hơn thì việc sử dụng vật liệu carbon phenolic đôi khi không phù hợp và người ta cần có vật liệu mài mòn khác nhẹ hơn

Tấm chắn nhiệt mài mòn siêu nhẹ

Chữ SLA trong SLA-561V nghĩa là super light-weight ablator hay vật liệu mài mòn siêu nhẹ. SLA-561V là loại vật liệu mài mòn độc quyền của Lockheed Martin đã được sử dụng như là loại vật liệu mài mòn chủ yếu trên các loại phương tiện hồi quyển dạng côn-cầu với góc mũi là 70° trong các sứ mệnh thăm dò sao Hỏa của NASA, ngoại trừ Mars Science Laboratory (MSL). SLA-561V bắt đầu bị mài mòn đáng kể ở thông lượng xấp xỉ 110 W/cm2, nhưng không chịu được thông lượng quá 300 W/cm2. Lớp bảo vệ MSL hiện là thiết kế TPS có hiệu năng tốt nhất, nó có khả năng chịu được thông lượng nhiệt 234 W/cm2. Thông lượng nhiệt cực đại mà Viking 1 chịu đựng khi hạ cánh trên sao Hỏa là 21 W/cm2. Với Viking 1, lớp vỏ chắn nhiệt không phải chịu sự mài mòn đáng kể nào. Viking 1 là tàu đổ bộ đầu tiên hạ cánh xuống sao Hỏa và có thiết kế cổ điển. Vỏ khí cầu của tàu Viking có đường kính cơ bản là 3,54 mét (lớn nhất được sử dụng trên sao Hỏa cho đến Phòng thí nghiệm Khoa học Sao Hỏa).[18]

Vật liệu mài mòn cabon thấm phenol

Thiết bị chứa mẫu từ tàu Stardust của NASA hạ cánh thành công xuống căn cứ Utah Range.

Phenolic-impregnated carbon ablator (PICA), là vật liệu làm từ sợi carbon được thấm phenol.[19] Đây là loại vật liệu mới được sử dụng cho hệ thống cách nhiệt TPS và có mật độ nhỏ hơn nhiều so với carbon phenolic) cùng với khả năng mài mòn hiệu quả ở thông lượng nhiệt cao. Độ dẫn nhiệt của vật liệu PICA thấp hơn so với các vật liệu mài mòn thông lượng nhiệt cao thông thường khác như carbon phenol.[cần dẫn nguồn]

PICA được phát minh bởi trung tâm nghiên cứu Ames của NASA vào những năm 90 và là vật liệu cách nhiệt chính được sử dụng trên tàu Stardust.[20] Tàu vũ trụ Stardust cùng với mẫu khi trở về bầu khí quyển Trái đất đã đạt vận tốc hồi quyển kỷ lục là (12,4 km/s (28.000 mph) ở độ cao 135 km). Đây là vận tốc cao hơn vận tốc hồi quyển của tàu Apollo và cao hơn 70% so với tốc độ của tàu con thoi.[21] PICA đóng vai trò quan trọng giúp tàu Stardust hoàn thành nhiệm vụ khi trở về Trái đất vào năm 2006. Tấm chắn nhiệt của Stardust (đường kính cơ bản 0,81 m) được làm bằng một mảnh nguyên khối chịu được tốc độ gia nhiệt danh nghĩa tối đa là 1.2 kW/cm2. Tấm chắn nhiệt sử dụng vật liệu PICA cũng được sử dụng trên phòng thí nghiệm khoa học sao Hỏa khi nó thâm nhập vào khí quyển sao Hỏa.[22]

PICA-X

Một loại vật liệu cải tiến và dễ sản xuất hơn có tên PICA-X đã được SpaceX phát triển trong giai đoạn in 2006–2010[22] để sử dụng trên tàu Dragon.[23] Tấm chắn nhiệt bằng PICA-X được sử dụng lần đầu tiên là trong sứ mệnh Dragon C1 ngày 8 tháng 11 năm 2010.[24] Tấm chắn nhiệt PICA-X được thiết kế, phát triển và chứng nhận đầy đủ bởi một nhóm nhỏ gồm 12 kỹ sư và nhà khoa học trong vòng chưa đầy 4 năm.[22] Tấm chắn nhiệt sử dụng PICA-X cũng rẻ hơn so với tấm chắn nhiệt PICA của NASA.[25]

PICA-3

Phiên bản sau khi cải tiến PICA-3—được phát triển bởi SpaceX từ giữa những năm 2010s và được sử dụng lần đầu trên tàu Dragon có người lái trong sứ mệnh bay trình diễn vào tháng 4 năm 2019 và được đưa vào sử dụng trên các tàu vũ trụ Dragon kể từ năm 2020.[26]

SIRCA

Vỏ aeroshell của Deep Space 2 là một thiết kế côn-cầu cổ điển với bán góc đỉnh là 45° phía sau được thiết kế dạng hình cầu giúp ổn định khí động học khi tàu hạ cánh từ bầu khí quyển xuống tới mặt đất.

Tấm mài mòn bằng sứ tái sử dụng thấm silicon (SIRCA) cũng được phát triển tại Trung tâm Nghiên cứu Ames của NASA. Nó được sử dụng trên Mars Pathfinder và xe tự hành Mars Exploration Rover. SIRCA cũng là vật liệu cách nhiệt sử dụng trên sứ mệnh tàu thăm dò sao Hỏa Deep Space 2 (không thành công) với tấm chắn nhiệt đường kính 0,35 m. Đây là vật liệu TPS duy nhất có thể được gia công thành các hình dạng tùy chỉnh và sau đó được lắp đặt trực tiếp vào tàu vũ trụ. Không cần xử lý sau, xử lý nhiệt hoặc phủ thêm (không giống như gạch cách nhiệt trên tàu con thoi). Nó có thể được ứng dụng làm gạch cách nhiệt, các phần cạnh, mũi chịu nhiệt.

AVCOAT

AVCOAT là tấm cách nhiệt mài mòn phát triển bởi NASA, là một hệ thống thủy tinh phủ epoxy-novolac.[27] NASA đã sử dụng tấm chắn nhiệt này trên tàu Apollo vào những năm 60, và sau đó ở trên các thế hệ tàu vũ trụ tiếp theo như tàu Orion dự kiến đưa lên quỹ đạo vào cuối những năm 2010s.[28]

Gạch cách nhiệt

Phi hành gia Andrew S. W. Thomas đang quan sát các tấm gạch cách nhiệt của tàu con thoi Atlantis.Một viên gạch sử dụng trên tàu con thoi làm bằng chất liệu LI-900.

Gạch cách nhiệt sử dụng trên hệ thống bảo vệ nhiệt TPS trên tàu con thoi làm bằng vật liệu LI-900 có một số đặc tính cách nhiệt đáng chú ý. Một viên gạch LI-900 được tiếp xúc trực tiếp với nhiệt độ 1.000 K ở một mặt thì ở mặt còn lại sẽ chỉ thấy ấm nếu chạm tay vào. Tuy nhiên chúng tương đối giòn, dễ vỡ và sẽ bị hỏng nếu trời mưa.

Làm lạnh bị động

Ở một số loại phương tiện hồi quyển thời kỳ đầu, như khoang đầu đạn Mk-2 hoặc chương trình Mecury, hệ thống bảo vệ nhiệt vận hành bằng cách làm mát bằng bức xạ. Ban đầu hệ thống hấp thụ thông lượng nhiệt trong xung nhiệt rồi giải phóng ra môi trường bên ngoài dưới dạng bức xạ nhiệt.

Các hệ thống bảo vệ nhiệt dựa trên bức xạ sử dụng các lớp phủ có độ phát xạ cao (HEC) để tạo điều kiện làm mát bằng bức xạ, trong khi một lớp gốm xốp bên dưới dùng để bảo vệ cấu trúc khỏi nhiệt độ bề mặt cao. Giá trị phát xạ nhiệt cao duy trì ổn định cùng với độ dẫn nhiệt thấp là yếu tố then chốt của các hệ thống chắn nhiệt bằng bức xạ.

TPS làm mát bằng bức xạ vẫn còn được áp dụng trên một số phương tiện bay hồi quyển. Vật liệu được sử dụng là carbon gia cố bằng sợi carbon (RCC) thay cho kim loại. RCC là vật liệu TPS trên mũi và mép cánh của Tàu con thoi, và cũng được đề xuất làm vật liệu cách nhiệt sử dụng trên X-33. Nhược điểm của RCC là nó có giá thành sản xuất rất cao, nặng và thiếu khả năng chống va đập mạnh.

Các máy bay hoạt động ở vận tốc lớn như SR-71 Blackbird và Concorde, cũng chịu ma sát với khí quyển và tăng nhiệt, nhưng với cường độ thấp hơn nhiều và thời gian cũng lâu hơn. Các nghiên cứu cho thấy cấu trúc kim loại Titan của SR-71 khôi phục lại độ bền ban đầu thông qua quá trình ủ do bị gia nhiệt khí động học. Đối với máy bay Concorde, mũi nhôm của nó cho phép nhiệt độ hoạt động (là nhiệt độ tại đó các kết cấu cơ khí và các thiết bị điện tử vẫn hoạt động bình thường) tối đa là 127 °C (261 °F) (ấm hơn khoảng 180 °C (324 °F) so với không khí xung quanh thông thường.

TPS làm mát bằng bức xạ cho các phương tiện bay hồi quyển còn gọi là TPS kim loại nóng. Các thiết kế TPS ban đầu cho tàu con thoi dựa trên siêu hợp kim Niken (gọi là René 41) và lớp phủ titan. Thiết kế này sau đó bị bác bỏ do người ta tin rằng TPS dựa trên ngói silica sẽ có chi phí phát triển và chế tạo thấp hơn. TPS siêu hợp kim Niken cũng được đề xuất cho X-33 những cũng không được chấp nhận.

Thiết kế ban đầu của tàu Mercury (với tháp thoát hiểm) sử dụng cấu hình TPS bức xạ nhiệt, nhưng sau đó chuyển sang sử dụng cấu hình TPS mài mòn.

Gần đây hệ thống TPS làm mát bằng bức xạ bắt đầu sử dụng loại vật liệu mới có tên vật liệu gốm tổng hợp ma trận nhiệt độ siêu cao, dựa trên Zirconi điborua và Hafnium diboride. TPS sử dụng loại vật liệu này thể hiện tốt trong dải nhiệt độ từ 0 đến hơn 2.000 °C (3.630 °F), với điểm nóng chảy trên 3.500 °C (6.330 °F). Chúng bền hơn về mặt cấu trúc so với vật liệu RCC nên không yêu cầu gia cố cấu trúc bằng các vật liệu như Inconel. Nó cũng cực kỳ hiệu quả trong việc bức xạ lại nhiệt hấp thụ nên không cần bổ sung thêm lớp lót cách nhiệt bên trong.

Làm lạnh chủ động

Ở trong hệ thống cách nhiệt này người ta sử dụng các tấm cách nhiệt làm từ hợp kim chịu nhiệt độ cao cùng với các chất làm lạnh lưu thông qua tấm chịu nhiệt.

Cấu hình hệ thống TPS này đã được đề xuất sử dụng trên Rockwell X-30 (NASP). NASP được thiết kế là một máy bay động cơ scramjet siêu vượt âm, nhưng chương trình phát triển đã bị hủy bỏ.

SpaceX hiện đang phát triển một lá chắn nhiệt được làm mát tích cực cho tàu vũ trụ Starship.[29][30]

Vào đầu những năm 1960, các hệ thống TPS khác nhau được đề xuất sử dụng nước hoặc chất lỏng làm mát khác phun vào lớp xung kích, hoặc đi qua các kênh dẫn trong tấm chắn nhiệt. Nhờ đó chúng có thể được thiết kế hoàn toàn bằng kim loại, việc phát triển sẽ rẻ hơn, tấm chắn nhiệt sẽ bền hơn, nhưng cũng có nhược điểm là trọng lượng tăng lên, độ phức tạp tăng lên và độ tin cậy thấp.

Tài liệu tham khảo

WikiPedia: Thâm nhập khí quyển http://www.2r2s.com/demo_missions.html http://www.airspacemag.com/space/is-spacex-changin... http://www.astronautix.com/craft/salyut7.htm http://www.astronautix.com/fam/rescue.htm http://www.buran-energia.com/bourane/bourane-const... http://www.jeanlachaud.com/research/Lachaud2010_Ab... http://www.jpaerospace.com/atohandout.pdf http://www.space.com/12859-nasa-satellite-falling-... http://www.spaceflightnow.com/station/exp16/080502... http://www.spaceref.com/news/viewpr.html?pid=27612